Connecting the future: what is 5G?

By Scott Faulds

Over the years, as technology has evolved, the way in which we all use and access the internet has changed dramatically. The devices that can access the internet have shrunk and become portable, from laptops that allow us to work anywhere to smartwatches that we can use to play music from our wrists.

At the same time, as more devices have gained the ability to easily connect to the internet, our usage has changed massively; we now consume a great deal of audio and video online. This has become even more apparent during the Covid-19 pandemic, with many of us turning to video conferencing tools to work from home and keep in contact with our friends and family.

Additionally, in recent years, we have begun to see our homes, cars and cities become ‘smart’ via the power of the internet, enabling a whole new generation of devices that can connect and exchange data.

In response to changes in the way we all use and access the internet, the mobile network infrastructure has evolved to allow for greater bandwidths, lower latency and ultimately faster connection speeds. The next generation of mobile network technology – known as 5G – will facilitate new data-driven technologies, such as, automation, self-driving cars and artificial intelligence.

What is 5G?

5G is the next generation of mobile internet technology, which operates across a broad spectrum of radio waves that will allow for faster, always-on access to the internet. It’s estimated that 5G will enable internet speeds up to 600 times faster than those experienced on 4G networks today. This would allow you, for example, to download an ultra-high-definition movie in 25 seconds. The ability to transfer data at these speeds allows for technologies, such as artificial intelligence and autonomous vehicles, to operate effectively. Some experts claim 5G could lead to a new era of productivity and growth.

However, the physical infrastructure required to build a 5G network can be difficult to deploy. The fast speeds achieved by 5G networks rely upon what is known as millimetre waves, which operate at a higher frequency than our current mobile networks. These waves have a shorter range and can be easily disrupted by obstacles, such as buildings, people and even rainfall. Therefore, to ensure network reliability, a 5G network will have to operate across low, medium and high frequencies. Each of these frequencies will require separate network infrastructure and will have various trade-offs, in terms of speed and service area.

As a result of the distance and obstacle limitations of 5G, there will be a need for a dramatic increase in the amount of physical infrastructure required to ensure reliable service, particularly in built-up urban environments. According to a recent report by McKinsey, a 5G network will require 15 to 20 network access points per square kilometre in densely populated areas, compared with 2 to 5 network access points required for existing mobile networks. Subsequently, the cost involved with establishing this new infrastructure ensures that in the short-term, we are unlikely to see the launch of nationwide 5G coverage anytime soon.  

The power of data

The ability to exchange large amounts of data at speed can have a significant positive effect on our economy. Research from Barclays, indicates that the deployment of 5G has the potential to increase annual UK business revenues by up to £15.7 billion by 2025. Additionally, the ability to exchange data at speed opens up new opportunities for us to improve the efficiency of the operation of our cities.

The advent of the smart city, where everything from streetlights to trains can communicate with each other, can only truly come to fruition when combined with the data speeds facilitated by 5G networks. The main benefit of establishing a fully-fledged smart city is the ability for cities to become sustainably more efficient, through the extrapolation and analysis of data. For a smart city to be at its most efficient, the collection and analysis of this data will have to occur in almost real-time and will rely heavily on artificial intelligence and automation. 

A study conducted by Massachusetts Institute of Technology (MIT) found that in New York City congestion could be reduced by up to 75% through the deployment of a ride-sharing algorithm built using real-time data generated by taxis and incoming requests. The system would allow drivers to work shorter shifts, create less traffic, reduce air pollution and shorten commutes (with an average wait time of 2.7 minutes).

The creation of smart cities, underpinned by 5G, could potentially allow us all to live in cities which are more efficient and responsive to changes in our behaviour. Analysis conducted by Cisco, has revealed that the efficiencies generated by smart city technology could result in cost savings of up to $2.3 trillion globally.

Therefore, it could be said that 5G technology has the potential to allow businesses and governments to make costs savings and generate new forms of revenue.

Final thoughts

The deployment of 5G networks will provide the base for the technology of the future to operate and enable innovation to thrive. It is likely that the speeds and reliability offered by a fully-fledged 5G network could generate economic benefits and allow governments to make cost savings by leveraging big data to make our cities operate in a more efficient manner.

However, the deployment of 5G will be a complex and potentially costly undertaking, and it will be a long time before we see the establishment of nationwide 5G coverage. Therefore, although there is a wide range of benefits associated with the establishment of a 5G network, it should not be seen as a silver bullet that will generate instantaneous economic benefits.

Ironically, the future of high-speed internet, will take time and will require a great deal of investment before the benefits are realised.


Follow us on Twitter to see which topics are interesting our research team.

Read some of our other blogs on smart cities and 5G:

What do you think?

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.