Heating Clydebank via the Clyde: renewable heat in the COP26 host city

Image: West Dunbartonshire Council

In less than ten months’ time, the eyes of the world will be on Glasgow, as the city plays host to the UN’s 26th Climate Change Conference (COP26). Leaders from across the world will come together to discuss enhanced ambitions to reduce greenhouse gas emissions and take steps to mitigate the effects of climate change. This is a process known as the ‘ratchet mechanism’, which envisions signatories of the Paris Agreement, stepping up their commitments to reduce carbon emissions every five years. This year’s conference in Glasgow is the first time that this mechanism will be in play, and expectations surrounding a significant acceleration of efforts to reduce greenhouse gas emissions are high.

With an eye on climate change and the impact of the Covid-19 pandemic, many countries are already discussing how they can take advantage of the need for economic recovery as an opportunity to accelerate the transition to carbon neutrality. A key element of this transition will be the decarbonisation of the housing stock, and the Climate Change Committee has highlighted the significant role that the implementation of renewable forms of heating will play in reducing the amount of carbon emitted by our homes.

Queens Quay, Clydebank

An example of a project which will take advantage of a variety of modern renewable technologies to create the “greenest town in Scotland” is the Queens Quay development in Clydebank, a site which is only five miles from the Scottish Event Campus where COP26 will take place.

Queens Quay is a £250 million regeneration of the former John Brown shipyard in Clydebank. Designed to take advantage of its waterfront location, the development will feature a variety of mixed-use spaces and a pioneering district heating system. This system will utilise Scotland’s first major and the UK’s largest water-sourced heat pump. The heat pump will extract heat from the River Clyde, and after a process of compression, the heat will be pumped into the development using a buried modular district heating system. It is estimated that this innovative combination of heat pump and district heating technology will cut more than 4,000 tonnes of CO2 emissions each year.

But just how do these technologies work? In this blog, we will take a look at how heat pumps and district heating systems operate, and their application in the Queens Quay development in Clydebank.

Heat pump

In simple terms, a heat pump is a form of renewable heating system that is able to move thermal energy from one location to another. There are a number of different types of heat pump which can extract thermal energy from different locations. At the Queens Quay development, a water-sourced heat pump will be used to extract thermal energy from the River Clyde.

Water-sourced heat pumps use a network of submerged pipes which contain a working fluid that absorbs the heat within the body of water. This working fluid then undergoes a process of conversion that increases the temperature of the heat generated. Once at an appropriate temperature, it can then be used to provide heating and hot water. 

Naturally, as not all developments are located near a body of water, the use of water-sourced heat pump is relatively uncommon. However, water-sourced heat pumps are able to operate more efficiently than ground and air-sourced heat pumps, as heat transfers more efficiently due to the stability of the temperature of water.

District heating

Once heat is produced, it’s vital that it is transferred to buildings in an efficient and reliable manner that prevents heat-loss. A system of district heating is often the most reliable way to utilise energy produced by any form of heat pump, and analysis conducted by the Department for Energy and Climate Change (now the Department for Business, Energy, & Industrial Strategy) found that this combination offers “large CO2 emissions reduction potential”.

A district heating system uses a network of insulated pipes to deliver heat from a centralised energy centre direct to connected buildings. Instead of a boiler, each building will have a heating interface unit which will enable individuals to control the temperature of the heat and hot water they receive without impacting other connected properties.

On top of helping to lower overall fuel costs and reduce greenhouse gas emissions, district heating systems are also easily expandable and new properties can be added to the network as required. This ensures that district-heating systems are future-proofed and are able to respond to the heat requirements of developments as they evolve over time.

Queens Quay implementation

The implementation of a water-sourced air pump and district heating system in the Queens Quay development provides Clydebank with the opportunity to become the “greenest” town in Scotland, and sets an example of how new developments can be created in a way that supports Scotland’s ambition to become net-zero by 2045.

By linking each property in the development to the network, and establishing a council owned energy company as operator, residents of Queens Quay will benefit from reductions in both the cost of energy and their overall carbon footprint. The success of a renewable heating project at this scale could be a significant development in Scotland’s transition to net-zero, as it may prove that renewable heating systems are an effective means to tackle climate change and fuel poverty.

Additionally, as a key benefit of a district heating system is its modularity, there is scope for existing buildings within Clydebank to be connected to the renewable heating network. West Dunbartonshire Council have set out their desire for the nearby NHS Golden Jubilee National Hospital to be added to the network and are also considering if all future developments should be required to join the district heating system.

Final thoughts

The dual threats posed by climate change and Covid-19 have provided the world with a rare opportunity to undergo a truly revolutionary process of recovery. With expectations high that this year’s COP26 will result in countries accelerating the transition to carbon-neutrality, the development of a pioneering renewable heating system just five miles from the conference may offer us a glimpse of the way homes will be heated in the future.

Decarbonising the housing stock is vital in the battle for carbon neutrality, but concerns have previously been raised about the impact this may have on people in fuel poverty. Ensuring that the transition to renewable forms of energy does not exacerbate existing inequalities will be key to ensuring that everyone benefits from the journey to net-zero.  

As a result, the success of the roll-out of the water-sourced heat pump and district heating system in Queens Quay, and the expected reduction in overall energy costs for residents, may prove to be a major stepping stone in Scotland’s journey to becoming carbon neutral.  


If you enjoyed this article you might like to read:

Follow us on Twitter to see which topic areas are interesting our research team.

Is this the future of social housing?

Goldsmith Street: Mikhail Riches / Tim Crocker 2019

Last year, a development of 105 homes on the outskirts of Norwich became the first social housing project to win the prestigious Royal Institute of British Architects Stirling Prize.

The Goldsmith Street estate was built by London architecture firm Mikhail Riches for Norwich City Council, and is the largest Passivhaus scheme in the UK. Passivhaus is an approach to building that provides a high level of occupant comfort while using very little energy for heating and cooling.

Goldsmith Street has been carefully thought through, and adjusted to take account of changing economic and environmental circumstances. In 2008, Norwich City Council selected Mikhail Riches to design the estate. The council had intended to sell the site to a local housing provider, but when the financial crash happened, the council decided to develop the site itself.

The architects have striven to ensure that the development acknowledges the historic context of the site:

“The design seeks to re-introduce streets and houses in an area of the city which is otherwise dominated by 20th century blocks of flats… Street widths are intentionally narrow at 14m, emulating the 19th century model.”

The homes themselves have been built to strict Passivhaus standards which include:

  • very high levels of insulation;
  • extremely high performance windows with insulated frames;
  • airtight building fabric;
  • ‘thermal bridge free’ construction;
  • a mechanical ventilation system with highly efficient heat recovery.

Passivhaus standards typically reduce heating energy consumption by up to 90% as compared to traditional housing. For residents in the Goldsmith Street development, heating bills should be about £150 a year.

Eco friendly housing

In recent years, local authorities and housing associations have been responding to the increasing demands for housing stock to have lower maintenance costs, lower energy costs and fewer emissions of carbon and other gases that can be harmful to the environment and human health.

The Passivhaus Trust has highlighted a growing number of local councils and housing associations that have been exploring Passivhaus standards as a way of tackling these issues.

One of the most ambitious social housing Passivhaus projects is Agar Grove in the London Borough of Camden. Previously a 1960s estate with an unenviable reputation, Agar Grove has been rebuilt with affordable and energy efficient homes. The first phase, involving 38 social rented homes was completed in 2018, and has already won awards for sustainability and community consultation. Once complete, the 500-home estate will be the largest Passivhaus development in the UK.

Cunningham House, Glasgow: Page\Park Architects

In Glasgow, the city’s first Passivhaus development for social rent was opened by Shettleston Housing Association in September 2019. The project provides nineteen new homes for older people in an innovative design that combines a five storey Passivhaus tower with a converted church building. All of the homes benefit from high levels of thermal insulation to augment the sandstone coat of the existing church structure. The project was named the best affordable housing development at the 2019 Inside Housing Awards.

Meanwhile, the City of York Council has released plans to build more than 600 homes across eight sites over the next five years that will be built to carbon zero standards. The council has pledged that 40% of the homes will be affordable, with 20% retained for social renting. The developments, also designed by Mikhail Riches, will have very high energy efficiency standards that exceed standard Passivhaus levels. It’s predicted that residents’ heating bills could be around £60 a year.

Homes for the future

There is a now a growing sense that housing, as well as consuming great amounts of energy, can also be a positive force for change. Energy efficient homes can make a strong contribution to climate change adaptation measures, can make housing more resilient to increasingly common extreme weather events, and can provide opportunities to improve economic development, quality of life and social equality.

In the past year, with many local councils, combined authorities, devolved administrations and the UK government declaring ‘climate emergencies’, the pressure on housing providers to lead by example has intensified. At the same time, governments are setting out plans to ensure new homes are more energy efficient.

The Ministry of Housing, Communities and Local Government is currently consulting on the Future Homes Standard, which includes proposals to increase energy efficiency requirements for new homes from 2025. Similarly, the Scottish Government plans to introduce new regulations to ensure all new homes use renewable or low carbon heating from 2024. A 2019 report commissioned by the Welsh Government has recommended major changes to most homes in the country, including a major programme to improve insulation and heating.

Goldsmith Street: Mikhail Riches / Tim Crocker 2019

The success and widespread publicity enjoyed by the Goldsmith Street project is likely to encourage other local authorities and housing associations to explore the possibilities of Passivhaus. But although the benefits are great, Passivhaus also presents significant challenges for housing providers.

Up-front costs are higher for Passivhaus developments, and there are additional maintenance and replacement costs. The technical requirements are strict, in order to ensure the maximum levels of airtightness and insulation. In addition, there is a shortage of skills needed to achieve the exceptional standards of construction demanded by Passivhaus (Norwich City Council has overcome this by bringing together a network of specialist contractors with the necessary expertise to work on Passivhaus projects).

Despite the challenges, Passivhaus seems to be offering a compelling answer to the significant problems of fuel poverty, climate change and the demand for high quality, affordable housing. As more local authorities and housing associations demonstrate its affordability, Passivhaus is breaking away from its image as a resource for the privileged and moving into the mainstream of social housing.


Further reading: blog posts from The Knowledge Exchange on energy efficiency at home

Follow us on Twitter to see what developments in public and social policy are interesting our research team.