‘Bending the Curve’ of biodiversity loss – could Covid-19 be the catalyst for change?

dead forest pic

“The evidence is unequivocal – nature is being changed and destroyed by us at a rate unprecedented in history” (WWF)

The latest Living Planet report from the Worldwide Fund for Nature (WWF) finds that 68% of the world’s wildlife populations have been lost since 1970 – more than two thirds in less than 50 years – with the most striking result a 94% decline in tropical subregions of the Americas. The report says this ‘catastrophic’ decline shows no signs of slowing. The cause – human activity.

Until 1970, the ecological footprint of the human population was less than the rate of the Earth’s regeneration. Explosive growth in global trade, consumption, population growth and urbanisation means we are now using more of the world’s resources than can be replenished:

“To feed and fuel our 21st century lifestyles, we are overusing the Earth’s biocapacity by at least 56%.” (WWF)

The environmental impact of human activity is hardly a new topic but the numerous warnings over the years haven’t had the desired effect of changing society’s trajectory. The stark warnings from recent reports including the 2018 IPCC (Intergovernmental Panel on Climate Change) special report on the impacts of global warming, and popular programmes such as the Blue Planet II series which highlighted the devastating impact of pollution on the world’s oceans, have certainly helped heighten awareness and action has been taken across the world to address the climate emergency. Unfortunately, the progress made so far is not enough to reverse the current declining trends.

But the new report raises hope in that times of crisis new ideas and opportunities for transformation can arise and that the current Coronavirus (COVID-19) pandemic could perhaps be the catalyst for such change.

‘People and nature are intertwined’

COVID-19 has undoubtedly injected a new sense of urgency, emphasising again the interconnectedness of humans and nature. It has provided a stark reminder how unparalleled biodiversity loss threatens the health of both people and the planet.

Factors believed to lead to the emergence of pandemics – including global travel, urbanisation, changes in land use and greater exploitation of the natural environment – are also some of the drivers behind the decline in wildlife.

The report emphasises that biodiversity loss is not just an environmental issue, but also a development, economic, global security, ethical and moral one. And it is also about self-preservation as “biodiversity plays a critical role in providing food, fibre, water, energy, medicines and other genetic materials; and is key to the regulation of our climate, water quality, pollution, pollination services, flood control and storm surges.”

As well the pandemic, a series of recent catastrophic events are used to underline the intrinsic links between human health and environmental health, including: Africa’s plague of locusts in 2019 which threatened food supplies, caused by the unusually high number of cyclones; extreme droughts in India and Pakistan in 2019, leading to an unknown death toll; and Australia’s most intense bushfire season ever recorded, made worse by unusually low rainfall and record high temperatures, as well as excessive logging.

Alongside this, the “extraordinary gains in human health and wellbeing” over the past century, including reduced child mortality and increased life expectancy, are highlighted as a cause for celebration but the study warns that the exploitation and alteration of the natural environment that has occurred in tandem threatens to undo these successes.

Biggest threats to biodiversity

Clearly, biodiversity is fundamental to human life and it is vital that the drivers of its destruction are addressed; and quickly.

Drawing on the Living Planet Index (LPI), which tracks the abundance of mammals, birds, fish, reptiles, and amphibians across the globe, using data from over 4,000 different species, the report identifies the major threat categories to biodiversity:

  • Changes in land and sea use
  • Invasive species and disease
  • Species overexploitation
  • Pollution
  • Climate change

It may be surprising to learn that climate change has not yet been the main driver of biodiversity loss. In fact, globally, climate change features lower on the scale of threats than the other drivers in almost all regions. Changes in land and sea use is the biggest proportional threat, averaged across all regions, at 50%. This is followed by species exploitation at 24% with invasive species taking third place at 13%. Climate change accounts for 6% on average.

However, the report warns projections suggest the tables are set to turn with climate change overtaking all other drivers in the coming years.

But all is not lost yet. The report argues that it is possible to reverse these trends and calls for action to do so by 2030.

Bending the Curve’

This year’s report highlights findings from significant new research, the Bending the Curve initiative, which uses pioneering modelling of different human behaviour scenarios aimed at restoring biodiversity. It argues that this has provided ‘proof of concept’ for the first time that we can halt, and reverse, the loss of nature while feeding a growing population:

“Bending the curve of biodiversity loss is technologically and economically possible, but it will require truly transformational change in the way we produce and consume food and in how we sustainably manage and conserve nature.”

2020 has certainly made the whole world stop and think. And it has provided an opportunity to reset humanity’s relationship with nature. Encouragingly, there has been widespread talk of a ‘green recovery’ from the pandemic and the British public have recently backed a “fairer, greener Britain” amid concerns the government might be rushing the country back to a ‘business-as-usual’ model.

Achieving a balance with nature will clearly require systemic change, as the Living Planet report shows. In the words of Sir David Attenborough, above all it will require a change in perspective”.


Read some of our other blogs related to the environment:

Follow us on Twitter to find out what topic areas are interesting our research team.

‘Veganuary’ – could a plant-based lifestyle really save the planet?

As we leave behind the indulgences of the festive period, an increasing number of people are signing up to ‘Veganuary’, a campaign encouraging people to try vegan for the month of January and beyond. Already, the campaign has reached its target of 350,000 participants as it continues to grow in popularity; increasing its support every year since its launch in 2014.

Participants sign up for a number of reasons, with major drivers being health, animal welfare and the environment. It’s perhaps no surprise that health is a major driver, given the time of year, but increasingly people are turning away from animal products in a bid to help protect the planet.

Indeed, animal agriculture is a huge contributor to climate change and while it hasn’t received the same attention as others such as the burning of fossil fuels for energy and transport, it is now receiving increasing media coverage.

Impact of animal agriculture

“The food industry is destroying the living world”. These were the words of environmental journalist George Monbiot, also a supporter of Veganuary, in the recent Channel 4 documentary Apocalypse Cow: How Meat Killed the Planet.

With the increasing population, there has been much discussion in recent years of the effects of urban sprawl and how to tackle this, but Monbiot suggests that attention should be turned to ‘agricultural sprawl’, which he asserts is a much bigger cause of habitat destruction. While ambling through the indisputably scenic Lake District, he describes the landscape as a “sheep-wrecked desert”, which was once home to a rich mosaic of trees, shrubs, plants and animals.

It is also noted that while deforestation in the Amazon is a topic of much current discussion and concern, Britain is actually one of the most deforested landscapes in the world, with agriculture one of the biggest drivers.

The documentary highlights that 51% of land in the UK is currently used for livestock or growing food for livestock, while less than 20% is used for growing cereals, fruit and vegetables for human consumption, and just 10% is used for trees – the one thing that is “essential for both nourishing living systems and preventing climate breakdown”.

Agriculture is responsible for 10% of greenhouse gas (GHG) emissions in the UK and 10-12% of emissions globally; the fourth highest GHG emitting sector in the world.

Monbiot makes a radical suggestion that all farming could be eradicated in the future as we look to other sources of food and more sustainable practices. This may be somewhat extreme and undoubtedly something with which the farming community would disagree.

Nevertheless, the extent of the current climate crisis warrants drastic measures and as one of the largest contributors, it would make sense for action to be taken to reduce the impact agriculture currently has.  And it has been argued that a change in diet is the easiest and fastest way to reduce our own personal emissions.

Impact of reduced meat consumption

According to calculations based on the current Veganuary participation figures, 31 days of a vegan diet for 350,000 people would equate to the following savings:

  • 41,200 tonnes of CO2 equivalent from the atmosphere – the same as 450,000 flights from London to Berlin;
  • 160 tonnes of PO43 equivalent (eutrophication) from waterways – the same as preventing 650 tonnes of sewage from entering waterways; and
  • 5 million litres of water, which is enough to fill an Olympic-sized swimming pool.

In addition, it is suggested that 1 million animals could be saved.

Analysis of the Veganuary 2019 campaign results by Kantar suggests that going vegan for January also leads to sustained meat reduction. Drawing on data from January to June 2019, it was found that there was a sustained reduction in consumption which is estimated to have saved approximately 3.6 million animals in Britain alone.

Still just 3% of the population identify as vegan according to Kantar. Nevertheless, those who participated in Veganuary but did not stay vegan beyond January, did maintain reduced consumption levels at least until July, suggesting a long-term impact on consumption habits.

With increasing numbers pledging their support to Veganuary each year and the resulting reductions in sales of red meat, it would seem that reducing meat consumption may well be a way forward.

Indeed, the United Nations (UN) has also emphasised the need for significant changes in global land use, agriculture and human diets. The UN-commissioned special report on climate change and land by the Intergovernmental Panel on Climate Change (IPCC) states that balanced diets, featuring plant-based foods, “present major opportunities for adaptation and mitigation while generating significant co-benefits in terms of human health”. By 2050, it suggests that dietary changes could free several million km2 of land and considerably reduce CO2 emissions.

Final thoughts

The ‘Veganuary effect’ has clearly been significant and one that sees no sign of dissipating any time soon.

Of course, changing diets isn’t the only way to reduce the environmental impact of food production. Reducing food waste and changing farming and land management practices can also help reduce emissions. The IPCC report also calls for an end to deforestation, the planting of new forests and support to small farmers. It does not call for an end to all farming.

So while we wait for the many governments to take meaningful action on climate change, perhaps picking up our knives and forks as the weapon of choice against the climate crisis is an effective way of making a difference now.


If you enjoyed this post, you may also like some of our other posts related to the environment and climate change:

Follow us on Twitter to see what topics are interesting our research team.

How urban farmers are learning to grow food without soil or natural light

Mandy Zammit/Grow Up, Author Provided

This guest blog was written by Silvio Caputo, Senior Lecturer in the School of Architecture, University of Portsmouth.

Growing food in cities became popular in Europe and North America during and immediately after World War II. Urban farming provided citizens with food, at a time when resources were desperately scarce. In the decades that followed, parcels of land which had been given over to allotments and city farms were gradually taken up for urban development. But recently, there has been a renewed interest in urban farming – albeit for very different reasons than before.

As part of a recent research project investigating how urban farming is evolving across Europe, I found that in countries where growing food was embedded in the national culture, many people have started new food production projects. There was less uptake in countries such as Greece and Slovenia, where there was no tradition of urban farming. Yet a few community projects had recently been started in those places too.

Today’s urban farmers don’t just grow food to eat; they also see urban agriculture as a way of increasing the diversity of plants and animals in the city, bringing people from different backgrounds and age groups together, improving mental and physical health and regenerating derelict neighbourhoods.

Many new urban farming projects still struggle to find suitable green spaces. But people are finding inventive solutions; growing food in skips or on rooftops, on sites that are only temporarily free, or on raised beds in abandoned industrial yards. Growers are even using technologies such as hydroponics, aquaculture and aquaponics to make the most of unoccupied spaces.

Something fishy

Hydroponic systems were engineered as a highly space and resource efficient form of farming. Today, they represent a considerable source of industrially grown produce; one estimate suggests that, in 2016, the hydroponic vegetable market was worth about US$6.9 billion worldwide.

Hydroponics enable people to grow food without soil and natural light, using blocks of porous material where the plants’ roots grow, and artificial lighting such as low-energy LED. A study on lettuce production found that although hydroponic crops require significantly more energy than conventionally grown food, they also use less water and have considerably higher yields.

Growing hydroponic crops usually requires sophisticated technology, specialist skills and expensive equipment. But simplified versions can be affordable and easy to use.

Mandy Zammit/Grow Up, Author Provided

Hemmaodlat is an organisation based in Malmö, in a neighbourhood primarily occupied by low-income groups and immigrants. The area is densely built, and there’s no green space available to grow food locally. Plus, the Swedish summer is short and not always ideal for growing crops. Instead, the organisation aims to promote hydroponic systems among local communities, as a way to grow fresh food using low-cost equipment.

The Bristol Fish Project is a community-supported aquaponics farm, which breeds fish and uses the organic waste they produce to fertilise plants grown hydroponically. GrowUp is another aquaponics venture located in an East London warehouse – they grow food and farm fish using only artificial light. Similarly, Growing Underground is an enterprise that produces crops in tunnels, which were originally built as air raid shelters during World War II in London.

The next big thing?

The potential to grow food in small spaces, under any environmental conditions, are certainly big advantages in an urban context. But these technologies also mean that the time spent outdoors, weathering the natural cycles of the seasons, is lost. Also, hydroponic systems require nutrients that are often synthesised chemically – although organic nutrients are now becoming available. Many urban farmers grow their food following organic principles, partly because the excessive use of chemical fertilisers is damaging soil fertility and polluting groundwater.

To see whether these drawbacks would put urban growers off using hydroponic systems, my colleagues and I conducted a pilot study in Portsmouth. We installed small hydroponic units in two local community gardens, and interviewed volunteers and visitors to the gardens. Many of the people we spoke to were well informed about hydroponic technology, and knew that some of the vegetables sold in supermarkets today are produced with this system.

Many were fascinated by the idea of growing food without soil within their community projects, but at the same time reluctant to consume the produce because of the chemical nutrients used. A few interviewees were also uncomfortable with the idea that the food was not grown naturally. We intend to repeat this experiment in the near future, to see how public opinion changes over time.

And while we don’t think hydroponic systems can replace the enjoyment that growing food in soil can offer, they can save water and produce safe food, either indoors or outdoors, in a world with increasingly scarce resources. Learning to use these new technologies, and integrating them into existing projects, can only help to grow even more sustainable food.

As with many technological advancements, it could be that a period of slow acceptance will be followed by rapid, widespread uptake. Perhaps the fact that IKEA is selling portable hydroponic units, while hydroponic cabinets are on the market as components of kitchen systems, is a sign that this technology is primed to enter mainstream use.


Silvio Caputo is Senior Lecturer in the School of Architecture, University of Portsmouth.

This article was originally published on The Conversation website and has been republished with permission under a Creative Commons licence. Read the original article.

If you enjoyed this blog, why not read some of our other blogs:

ReGen Villages: is this the future of sustainable living? 

0031

‘Illustration © EFFEKT’

The Netherlands covers an area of 41,543 km², and has a population of 17 million people. That works out at 488 people per square kilometre, making Holland the most densely populated country in the European Union. By comparison, the UK has a population density of 413 people per sq km, while the figure for Scotland is just 68 people per sq km

Statistics like that matter when it comes to waste management. Lack of space in the Netherlands has prompted successive governments to divert waste from landfill, and encourage more recycling. The waste management movement was strongly influenced by Ad Lansink, a chemistry lecturer turned politician, who developed “Lansink’s Ladder”. This tool has six “rungs”, with disposal on the bottom, then recovery, recycling, reuse and on the top rung prevention.

The Dutch approach has reaped impressive benefits, with high rates of recycling and most of the remainder being incinerated to generate electricity and heat.

However, there is a growing sense that recycling in the Netherlands may be close to its limit. In 2015, Green Growth in the Netherlands reported that since 2000, the percentage of recycled waste has remained more or less constant.

“Recycled material reached 81% in 2012, a high share that has been fairly constant over the years. This may indicate that the recycling percentages are close to their achievable maximum.”

The Dutch are now looking for further ways to create more value from recycled waste.

ReGen Villages

One such idea is the development of  “regenerative villages” (ReGen). These self-reliant communities will produce their own food, generate their own energy and recycle their own waste.

The ReGen model is the brainchild of California-based ReGen Villages, which is partnering with EFFEKT, a Danish architecture practice, to launch a pilot version in the Netherlands this year. 

Each ReGen community will contain a variety of homes, greenhouses and public buildings, with built-in sustainable features, such as solar power, communal fruit and vegetable gardens and shared water and waste management systems.  The five principles underpinning the concept are:

  • energy positive homes,
  • door-step high-yield organic food production,
  • mixed renewable energy and storage,
  • water and waste recycling,
  • empowerment of local communities

The first 25 pilot prefabricated homes will be located at Almere in the west of Holland. Almere has experienced exponential growth, rising from farmland in the 1970s to become the seventh largest city in the Netherlands.

Waste management is a key element in the ReGen villages, which will have  ‘closed-loop’ waste-to-resource systems that turn waste into energy.

0026

‘Illustration © EFFEKT’

Prospects and problems

There are plans to roll out the model in other communities, in Europe, North America and the Middle East. Off-grid communities are not a new idea. But the necessary technology, falling costs and consumer demand have reached a point where the ReGen approach may become truly sustainable. The idea offers the promise of meeting the challenges of rising populations making unprecedented demands on limited resources.

Interviewed in The Guardian, Frank Suurenbroek, professor of urban transformation at the Amsterdam University of Applied Sciences, acknowledged the need for such projects, but also highlighted potential problems:

“A possible field of tension is how the technological demands of sustainability and circularity [interact with] spatial configurations needed to create attractive places and the desire to create new houses fast. Both worlds have to learn how to connect. Experiments with new sustainable quarters are interesting and needed, but a major issue is how to do this within existing built areas.”

All eyes on Almere

Once the first 25 homes are built, a further 75 will complete the village. It will take a lot of time, money, skill and muscle to make the project a success . We’ll be watching with interest to see if the vision can be turned into reality.

Our thanks to EFFEKT in Copenhagen for their permission to reproduce the images in this blog post.


If you’ve found this blog post interesting, you may also like our previous posts on recycling and the circular economy: